******HIDUP ADALAH UNTUK IBADAH ********JADIKAN SELURUH AKTIVITAS HIDUPMU UNTUK MENCAPAI KEBAHAGIAAN DUNIA AKHIRAT *********JALAN YANG LURUS ***********yaitu jalan orang-orang yang telah Allah berikan nikmat, bukan jalan yang dimurkai Allah dan juga bukan jalan yang sesat.

Selasa, 06 Desember 2011

Kumpulan Soal Olimpiade dan Persiapan UN 2012



Setelah beberapa saat konsentrasi dalam pengerjaan soal-soal persiapan UN SD tahun 2012, akhirnya hari ini saya upload soal-soal, yaitu:Kumpulan Soal SD Persiapan UN 2012. Ada tiga matapelajaran yang dapat di download, yaitu: Matematika (10 paket soal+kunci+pembahasan), IPA (10 paket soal+kunci+pembahasan) dan Bahasa Indonesia (5 paket soal + kunci + pembahasan). Masing-masing paket terdiri dari 40-50 soal pilihan ganda. Tidak hanya itu saja,  ada bonus, kumpulan soal olimpiade IPA dan matematika untuk SD dan soal-soal yang akan selalu diupdate.
Member yang sudah bergabung sementara sudah ada 10 an orang (guru, siswa dan orang-tua). Ini saatnya Anda bergabung untuk menjadi Member ForumLangit.Com. 
Berikut ini, beberapa  soal yang bisa adik-adik jadikan latihan pendalaman materi persiapan uasbn 2011. Semoga bermanfaat.
1. Bel pertama berdering setiap 8 menit. Bel kedua berdering setiap 15 menit.  Kedua bel dibunyikan bersamaan pada pukul 07.18, maka kedua bel akan berbunyi bersama-sama lagi pada pukul ….
A. 07.20
B. 07.24
C. 09.18
D. 10.23
2. Bak penampungan air berbentuk kubus dengan rusuk 20 dm. Air dalam bak dialirkan ke dalam bak mandi selama 25 menit. Jika sisa air 1500 liter, maka debit air yang keluar = …. dm^3/menit.
A. 240
B. 250
C. 260
D. 270
3. Perbandingan uang Rima:Dhimas:Adi=2:5:9. Jika jumlah uang Dhimas dan Adi adalah Rp 700.000,00, maka selisih uang Rima dan Dimas adalah ….
A. Rp 100.000,00
B. Rp 150.000,00
C. Rp 200.000,00
D. Rp 250.000,00
4. Harga buku Rp  215.000,00. Setelah diberi potongan harga, maka harganya menjadi Rp 172.000,00. Jadi persentase diskonnya  = … %
A. 10
B. 20
C. 15
D. 30
5.  Berat sebuah gelang emas adalah 28 gram dan berkadar 22 karat. Maka kandungan emas murninya = … gram
A. 3 3/5
B. 2 1/5
C. 3 3/4
D. 2 1/4
6. Fakto Persekutuan Terbesar (FPB) dari 32 dan 48 adalah ….
A. 4
B. 8
C. 16
D. 24
7. Petugas siskamling di 3 pos ronda memukul  kentongan secara bersamaan pada pukul 19.30, selanjutnya petugas pos ronda A memukul kentongan setiap 15 menit, pos ronda B setiap 30 menit dan pos ronda C setiap 45 menit. Mereka memukul kentongan secara bersamaan kembali untuk kedua kalinya pada pukul ….
A. 19.45
B. 20.00
C. 20.15
D. 21.00
8. Sebuah tabung berjari-jari 21 cm dan tingginya 50 cm. Total luas permukaan tabung tersebut adalah …. m^2
A. 1.050
B. 2.343
C. 4.686
D. 9,372
9. Jumlah siswa di suatu sekolah 672 orang. Siswa perempuan ada 7/8 bagian. Banyak siswa laki-laki adalah ….
A. 588 orang
B. 84 orang
C. 80 orang
D. 42 orang
10. Jarak kota A-B pada peta 5 cm. Skala peta 1 : 4.000.000. Dari kota A Ayah berangkat pukul 07.15 dengan bus berkecapatan 80 km/jam. Jadi, Ayah akan sampai di ktoa B pukul ….
A. 09.40
B. 09.45
C. 10.40
D. 10.45

Kumpulan Soal Olimpiade Matematika SD
Silakan adik-adik, jawab oal-soal berikut. Soal ini merupakan soal-soal eksplorasi olimpiadematematika untuk tingkat SD. Kali ini sudah saya sertakan jawabannya, namun untuk pembahasannya sialkan adik-adik pelajari sendiri ya.
1. Rika akan membuat semua rusuk balok dari seutas kawat yang panjangnya tidak diketahui. Panjang, lebar, dan tinggi balok tersebut memenuhi perbandingan 3:2:1. Diketahui bahwa panjang balok adalah 1,5 m. Berapa panjang kawat semula jika ternyata setelah selesai, panjang kawat yang tersisa adalah 0,5 m ?
2. Tom dapat memakan 3 kue dalam 2 menit, sedangkan Jerry dapat memakan 2 kue dalam 3 menit. Berapa kue yang dapat mereka makan secara bersama-sama dalam setengah jam ?
3. Terdapat 2 buah pensil dan 3 buah ballpoint yang akan diberikan kepada 5 orang siswa: A, B, C, D dan E yang masing-masing tepat akan mendapatkan 1 buah alat tulis. Jika diketahui A dan B mendapatkan alat tulis yang sama, B dan D mendapatkan alat tulis yang berbeda,  D dan E mendapatkan alat tulis yang berbeda, siapakah yang mendapatkan pensil ?
4. Pada suatu hari Agus berangkat memancing pukul 08.45, pulang pukul 15.15. Lama Agus memancing adalah ….. (… jam  … menit)
5. Di kantor Dolog terdapat 550 karung beras. Tiap karung beratnya 60 kg. Pegawai di kantor tersebut menggantikan karung tersebut dengan karung baru tiap kilogrammnya 40 kg. Banyaknya karung yang dibutuhkan adalah … (buah)
6. Ayah bertugas rondah malam dengan jadwal 2 malam sekali. Paman 3 malam sekali. Jika beronda malam bersama-sama pertama kali pada tanggal 6 Juni 2003, maka mereka dapat bersama-sama kembali beronda ketiga dan keempat kalinya pada bulan Juni, tanggal ….
7. Ayah memperoleh upah kotor dari pekerjaannya dalam sebulan Rp 600.000,00 dengan pajak penghasilan 15%. Berapa rupiah upah bersih ayah selama 1 tahun  ?
8. Jika rata-rata 30 hari, Adik Rima lahir pada tanggal 25 Agustus 1992. Berapa harikan umur adik Rima hingga tanggal 4 Januari 1994 ?
9. Ayah ingin menuangkan minyak 900 liter ke dalam beberapa buah drum dan jerigen. Daya tampung sebuah drum 240 liter dan jerigen 20 liter. Berapa kemungkinan banyak drum dan jerigen yang dibutuhkan ?
10. Dari pukul 07.00 pagi sampai dengan pukul 10.00 pagi, jarum menit pada jam sudah berputar berapa derajat ?
11. Ani membuka sebuah buku. Ternyata kedua nomor halaman yang tampak bila dijumlahkan 333. Kedua halaman buku yang dimaksud adalah ….
12. Budi dapat naik sepeda sejauh 15 km dalam 50 menit. Dengan kecepatan yang sama, berapa lama waktu yang dibutuhkan Budi untuk mencapai jarak 12 km ?
13. Jika a adalah hasil penjumlahan 5 bilangan prima pertama dan b adalah hasil penjumlahan faktor-faktor prima dari 12, berapakah selisih a dan b ?
Silakan ya adik-adik coba tuliskan jawabannya di kotak komentar berikut ?
  1. Jawaban:
      1. 12,5 cm
      2. 65
      3. C dan D
     4. 6 jam 30 menit
     5. 825 buah
     6. 18 juni’03 dan 24 juni’03
     7. Rp 6.120.000,-
     8. 489 hari
     9. 3 drum dan 9 jerigen
    10. 90 derajat
    11. 166 dan 167
    12. 40 menit
    13. 13

    Soal Olimpiade Matematika Dalam Bahasa Inggris
    Instructions:
    -Write down your name, team name and candidate number on the answersheet.
    -Write down all answers on the answer sheet. Only Arabic NUMERICALanswers are needed
    - Answer all 15 problems. Each problem is worth 1 point and the total is 15points.
    - For problems involving more than one answer, points are given only when
    - ALL answers are corrected.
    - No calculator or calculating device is allowed.
    - Answer the problems with pencil, blue or black ball pen.
    - All materials will be collected at the end of the competition.
    Soal I
    1. Starting from the central circle, move between two tangent circles. What is the number of ways of covering four circles with the numbers 2, 0, 0 and 8 inside, in that order?
    2. Each duck weighs the same, and each duckling weighs the same. If the total weight of 3 ducks and 2 ducklings is 32 kilograms, the total weight of 4 ducks and 3 ducklings is 44 kilograms, what is the total weight, in kilograms, of 2 ducks and 1 duckling?
    3. If 25% of the people who were sitting stand up, and 25% of the people who werestanding sit down, then 70% of the people are standing. How many percent of the people were standing initially?
    4. A sedan of length 3 metres is chasing a truck of length 17 metres. The sedan is
    travelling at a constant speed of 110 kilometres per hour, while the truck is travelling at a constant speed of 100 kilometres per hour. From the moment when the front of the sedan is level with the back of the truck to the moment  when the front of the truck is level with the back of the sedan, how many seconds would it take?
    5. Consider all six-digit numbers consisting of each of the digits ‘0’, ‘1’, ‘2’, ‘3’, ‘4’ and ‘5’ exactly once in some order. If they are arranged in ascending order, what is the 502nd number?
    6. How many seven-digit numbers are there in which every digit is ‘2’ or ‘3’, and
    no two ‘3’s are adjacent?
    7. How many five-digit multiples of 3 have at least one of its digits equal to ‘3’?
    8. ABCD is a parallelogram. M is a point on AD such that AM=2MD, N is a point on AB such that AN=2NB. The segments BM and DN intersect at O. If the area of
    ABCD is 60 cm2, what is the total area of triangles BON and DOM?
    9. ABCD is a square of side length 4 cm. E is the midpoint of AD and F is the midpoint of BC. An arc with centre C and radius 4 cm cuts EF at G, and an arc with centre F and radius 2 cm cuts EF at H. The difference between the areas of the region bounded by GH and the arcs BG and BH and the region bounded by EG, DE and the arc DG is of the form m? ?n cm2, where m and n are integers. What is the value of m+n?
    10.  In a chess tournament, the number of boy participants is double the number of girl participants. Every two participants play exactly one game against each other. At the end of the tournament, no games were drawn. The ratio between the number of wins by the girls and the number of wins by the boys is 7:5. How many boys were there in the tournament?
    11. In the puzzle every different symbol stands for a different digit.
    What is the answer of this expression which is a five-digit number?
    12. In the figure below, the positive numbers are arranged in the grid follow by the arrows’ direction.
    For example,
    “8”is placed in Row 2, Column 3.
    “9” is placed in Row 3, Column 2.
    Which Row and which Column that “2008” is placed?
    13. As I arrived at home in the afternoon. The 24-hour digital clock shows the time as below (HH:MM:SS). I noticed instantly that the first three digits on the platform clock were the same as the last three, and in the same order. How many times in twenty four hours does this happen?
    Note: The clock shows time from 00:00:00 to 23:59:59.
    Soal II
    1. We are given a number of equilateral triangles with lateral length 1 cm. They come in two colors, yellow and blue. Three blue and one yellow triangles can be arranged to make an equilateral triangle of lateral size 2 cm (see 1st Pattern below). Six blue and three yellow triangles are arranged to form an equilateral triangle of lateral size 3 cm (see 2nd Patternbelow).
    a. How many blue triangles and yellow triangles are required in the arrangement with lateral length 6 cm?
    b. If you would like to make a similar arrangement to form an equilateral triangle of lateral size 10 cm, how many blue triangles and yellow triangles are needed?
    c. If you would like to make equilateral triangle of lateral size 20 cm, how many blue triangles and yellow triangles are needed?
    2. We define a trapezoid as a quadrilateral, which has a pair of parallel laterals; another pair of laterals are not parallel. In the rectangular arrangement below, there are exactly three noncongruent trapezoids. One of them is BCIG.
    a. Find the other two non-congruent trapezoids.
    b. Find the other 7 trapezoids which are congruent to BCIG.
    c. What is the total number of trapezoids that can be made on the arrangement (both congruent and non-congruent, including BCIG).
    3. There are 96 distinct ways an I-tromino (1 × 3 rectangular tile) can be positioned on squares of an 8 × 8 chessboard, along the lines of the chessboard. There are 48 vertical positions and 48 horizontal positions. (see picture).
    a. In how many distinct ways can an V-tromino (see picture) be positioned on squares of the chessboard?
    b. In how many distinct ways can a T-tetramino (see picture) be positioned on squares of the chessboard?
    c. In how many distinct ways can an L-tetramino (see picture) be positioned on squares of the chessboard?
    4.  Right-isosceles triangles are used to make various arrangements, so that the arrangements contain squares, as in the following illustrations:
    1st illustration: Using two triangles, we can make an arrangement, which contains one square: ABCD.
    2nd illustration: Using four triangles, we can make an arrangement, which contains two squares: ABEF and BCDE.
    3rd illustration: Using eight triangles, we have six squares: ABEF,BCDE,EDIH, FEHG,BDHF and ACIG.
    a. Using 10 of such triangles, how many squares at most can we find?
    b. How about using 12 triangles?
    c. How about using 18 triangles?
    d. How about using 24 triangles?
    5. Popon is to deliver newspapers along the streets in his neighborhood. He is paid by the distance he makes, and thus the farther he makes, the higher the pay is. While he can cross any intersection as many times as he likes, he cannot pass any street more than once ( a street is one segment between 2 adjacent points). For example, in a neighborhood which looks like this, Popon is to start from K and to finish at O. To get the highest payment, he takes the longest possible route. One possibility is indicated by 1-2-3-4-5-6-7-8 in the figure below.
    If the neighborhood looks like the following picture, what is the longest possible route from A to B? Trace and indicate the route by writing numbers 1,2,3,… on the streets of the route.
    The following figures show a triangular pyramid and some of its nets.
    You are given 3 sheets of graph paper to work on ( you may not use them all), and one sheet of pink paper. You are asked to draw the largest cube net on the graph paper, such that the cube net fits the pink paper.
    Soal III
    1. There are 5 trucks. Trucks A and B each carry 3 tons. Trucks C and D each carry 4.5 tons. Truck E carries 1 ton more than the average load of all the trucks. How many tons does truck E carry?
    2. Let A = 200320032003   2004200420042004 and B = 200420042004  2003200320032003.
    Find A – B.
    3. There are 5 boxes. Each box contains either green or red marbles only. The numbers of marbles in the boxes are 110, 105, 100, 115 and 130 respectively. If one box is taken away, the number of green marbles in the remaining boxes will be 3 times the number of red marbles. How many marbles are there in the box that is taken away?
    4. Find the smallest natural number which when multiplied by 123 will yield a product that ends in 2004.
    5. Peter has a weigh balance with two pans. He also has one 200 g weight and one 1000 g weight. He wants to take 600 g of sugar out of a pack containing 2000 g of sugar. What is the minimum number of moves to accomplish this task?
    6. It takes 6 minutes to fry each side of a fish in a frying pan.  Only 4 fish can be fried at a time. What is the minimum number of minutes needed to fry 5 fish on both sides?
    7. John and Carlson take turns to pick candies from a bag. John picks 1 candy, Carlson 2 candies, John 3, Carlson 4 and so forth. After a while there are too few candies to continue and so the boy whose turn it is, takes all the remaining candies. When all the candies are picked, John has 1012 candies in total. What was the original number of candies in the bag?
    8. There are five positive numbers. The sum of the first and the fifth number is 13. The second number is one-third of the sum of these five numbers, the third number is one-fourth of this sum and the fourth number is one-fifth of this sum. What is the value of the largest number?
    9. In a class of students, 80% participated in basketball, 85% participated in football, 74% participated in baseball, 68% participated in volleyball. What is the minimum percent of the students who participated in all the four sports events?
    10. Three digit numbers such as  986, 852 and 741 have digits in decreasing order. But  342, 551, 622 are not in decreasing order. Each number in the following sequence is composed of three digits:  100, 101, 102, 103, …, 997, 998, 999. How many three digit numbers in the given sequence have digits in decreasing order?
    11. In the following figure, the black ball moves one position at a time clockwise. The white ball moves two positions at a time counter–clockwise. In how many moves will they meet again?
    12. Compute: 1^2 – 2^2 + 3^2 – 4^2 + ……….. – 2002^2 + 2003^2  – 2004^2 + 2005^2
    13. During recess one of the five pupils wrote something nasty on the blackboard. When questioned by the class teacher, they answered in following order:
    A: “It was B and C.”
    B: “Neither E nor I did it.”
    C: “A and B are both lying.”
    D: “Either A or B is telling the truth.”
    E: “D is not telling the truth.”
    The class teacher knows that three of them never lie while the other two may lie. Who wrote it?
    14. In the figure below, PQRS is a rectangle.    What is the value of a + b + c?
    15. In the following figure, if CA = CE, what is the value of x?





     Contoh soal IPAKELAS 6 SD 
    Berikut ini soal dan pembahasan yang berkaitan dengan cara perkembangbiakan hewan dan tumbuhan. Semoga bermanfaat.
    1. Tumbuhan berikut pada gambar di bawah ini berkembangbiak secara ….
    A. generatif
    B. spora
    C. vegetatif buatan
    D. tunas
    Pembahasan:
    Gambar di atas adalah tumbukan pakis. Pakis berkembang biak dengan cara vegetatif alami, yaitu spora. Jawaban A, C dan D salah.
    Jawaban: B
    2. Bebek termasuk hewan yang berkembangbiak dngan cara bertelur. Hal ini ditunjukkan dengan ciri-cirinya, yaitu:
    A.  mengalami masa mengandung
    B. memiliki daun telinga
    C. memiliki kelenjar susu
    D. memiliki bulu sebagai penutup tubuhnya
    Pembahasan:
    Bebek termasuk hewan yang berkembangbiak dengan cara bertelur. Ciri hewan tersebut antara lain memiliki bulu sebagai penutup tubuhnya. Jawaban A salah, karena bebek tidak milikiki masa mengandung. Jawaban B salah karena bebek tidak memiliki daun telinga. Jawaban C salah, karena bebek tidak memiliki kelenjar susu.
    Ketemu lagi di pembahasan selanjutnya…